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Abstract. Relations between different problems described by the linearized Boltzmann equation (LBE) are discussed on the
basis of the classical symmetry of LBE and kinetic boundary condition. The theory is developed for the system of arbitrary
Knudsen number (Kn) from the view point of the Green function. After showing the main idea of the approach to steady
problems for bounded and unbounded domains, its extension to unsteady problems in a fixed bounded domain is given. In
particular, in the latter, recovery of Kubo formula for the viscosity and thermal conductivity in the fluctuation–dissipation
theorem and its extension to the systems of arbitrary Kn are shown. A comment on the extension to gas mixtures is also given.
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INTRODUCTION

Relations between different problems described by the linearized Boltzmann equation have been discussed by many
researchers because of the interest in Onsager–Casimir relation based on the entropy production argument (e.g.,
Refs. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]). For example, Poiseuille flow vs. thermal transpiration and thermophoresis vs.
thermal polarization are typical examples of such relations. In the present paper, we review the main results of our
recent papers [11, 12, 13] that are based on the idea of the Green function and give a direct interpretation of those
relations without entropy production argument. The theory developed in these references makes use of the classical
symmetry of the linearized collision operator and scattering kernel of the boundary condition [15, 5], complemented
by the discussions on the far field behavior in the case of unbounded domain. The used symmetry is the standard
property for the kinetic theory description to be consistent with the second law of thermodynamics [5]. The reciprocal
relations between different problems can be understood by the presented approach as a consequence of the Green
reciprocity. Different from the entropy production argument, the thin layer that contains the surface of (or the interface
with) the body inside is not included in the considered domain in our theory [11, 12]. This feature enables us to develop
the theory for time-dependent problems [12] as a natural extension from the steady case [11]. As a consequence, a
reinterpretation of the Kubo formulas (the fluctuation–dissipation theorem) for the viscosity and thermal conductivity
is obtained. Further, mass and heat flows through a channel can be understood as a generalization of those formulas.

We shall show below the above mentioned results, following Refs. [11, 12]. However, we would like the reader to
remember that some physical settings and notations here may be changed from the originals [11, 12] for conciseness.
Poiseuille flow and thermal transpiration will be repeated in the sequel as an illustrative example.

SYMMETRIC RELATION FOR STEADY BOUNDARY-VALUE PROBLEMS

Consider the steady behavior of a single-component monatomic rarefied gas in a domainD , whereD may be bounded
or unbounded. The state of the gas is so close to the reference equilibrium state at rest with uniform densityρ0 and
temperatureT0 that the second (or higher) order effect of the deviation from this state can be neglected (linearization).

With a proper choice of reference lengthL, we denote the spatial coordinates, molecular velocity, and velocity dis-
tribution function of molecules byLxxx, (2kT0/m)1/2ζζζ , andρ0(2kT0/m)−3/2[1+φ(xxx,ζζζ )]E(ζζζ ). Herek is the Boltzmann
constant,m is the mass of a molecules, andE(ζζζ ) = π−3/2exp(−|ζζζ |2). Denoting byD the region ofxxx corresponding
to the dimensional regionD , the gas behavior is described by the following steady linearized Boltzmann equation:

ζi
∂φ
∂xi

=
2√

π Kn
L (φ)+ I(xxx,ζζζ ), (xxx∈ D, ζζζ ∈ R3). (1)



Here Kn is the Knudsen number (0< Kn < ∞; Kn = ℓ0/L with ℓ0 being the mean free path at the reference state) andI
is a given function. Most typically,I represents the effect of a weak external force, though it is not limited to some real
force (thusI will be referred to “external force” in the sequel).L has the following well-known properties [15, 16]:

(i) L (Φ)− = L (Φ−), whereΦ−(xxx,ζζζ ) ≡ Φ(xxx,−ζζζ ) (L commutes with symmetries inζζζ -space),
(ii) ⟨ΦL (Ψ)⟩ = ⟨ΨL (Φ)⟩, where⟨. . .⟩ =

∫
. . .(ζζζ )E(ζζζ )dζζζ (self-adjointness),

(iii) L (Φ) = 0 holds if and only ifΦ is a linear combination of 1,ζζζ , and|ζζζ |2,
(iv) ⟨ΦL (Φ)⟩≤ 0 and the equality holds if and only ifΦ is a linear combination of 1,ζζζ , and|ζζζ |2 (L is non-negative).

The boundary∂D of the domainD is classified into two parts: the interface with or surface of non-gas material
(“body”), say real boundary∂Dw, and artificial boundary∂Dg, i.e., ∂D = ∂Dw ∪ ∂Dg. 1 φ obeys the following
condition on∂Dw:

φ = gw +
∫

ζ ∗
i ni<0

|ζ ∗
i ni |E(ζζζ ∗)
|ζini |E(ζζζ )

R(ζζζ ∗
,ζζζ ;xxx)(φ ∗−g∗w)dζζζ ∗

, ζini > 0, (2a)

gw(xxx,ζζζ ) = Pw(xxx)+2ζiuwi(xxx)+(|ζζζ |2− 5
2
)τw(xxx), (2b)

whereφ andgw with ∗ indicate that their argumentζζζ is replaced byζζζ ∗; nnn (or ni) is the unit inward normal to the
boundary; and(2RT0)1/2uuuw, T0(1+ τw), andp0(1+Pw) denote the velocity of the body surface, its temperature, and
corresponding saturation pressure of the gas (p0 = ρ0kT0/m). Because of the steady problem,D does not deform, so
thatuwini = 0.R represents the scattering law for gas molecules on the boundary at the reference state.Rshould satisfy
standard properties in kinetic theory (such as the uniqueness condition [16], detailed balance [15, 5]), though there
are some differences depending on whether∂Dw is a simple boundary or condensed phase. The reader is referred to
Appendix of Ref. [12] for the details. Here, we just remark that, when∂Dw is a simple boundary,⟨ζiniφ⟩ = 0 and
consequentlyPw may be replaced by an arbitrary constant (for example, one may putPw = 0).

Next consider the imaginary boundary∂Dg. We consider the imaginary boundary composed, in the most general

case, of the following three parts (∂Dg = ∂D(1)
g ∪∂D(2)

g ∪∂D(3)
g ), where∂D(3)

g represents the boundary at infinity when
D is unbounded:

(i) On ∂D(1)
g , φ obeys

φ(xxx,ζζζ ) = hin(xxx,ζζζ ) for ζini > 0, xxx∈ ∂D(1)
g , (3a)

wherehin is a given function forζini > 0. For later discussions, we denote this function extended to the whole
range ofζζζ by h(xxx,ζζζ ). The way of extension is arbitrary and does not influence the results that follow.

(ii) On ∂D(2)
g , φ obeys

φ = h(xxx,ζζζ )+
∫

∂D(2)
g

∫
ζ ′

i n′i<0
P(xxx′,ζζζ ′

,xxx,ζζζ )(φ ′−h′)dζζζ ′dS′ for ζini > 0, xxx∈ ∂D(2)
g , (3b)

whereh(xxx,ζζζ ) is a given function forζζζ ∈ R3, xxx∈ ∂D(2)
g ; nnn′ is the inward unit vector normal to∂D(2)

g at position

xxx′; dS′ is the surface element of∂D(2)
g at positionxxx′; andφ ′ = φ(xxx′,ζζζ ′) andh′ = h(xxx′,ζζζ ′).

(iii) WhenD is unbounded,φ obeys the following condition at infinity (i.e.,∂D(3)
g ):

φ → h(xxx,ζζζ ) as|xxx| → ∞, (3c)

whereh(xxx,ζζζ ) is a solution of the Boltzmann equation (1).

The reader is referred to Appendix of Ref. [12] for the properties ofP on ∂D(2)
g . Here we just remark that the typical

example ofP on ∂D(2)
g is thatφ −h obeys the specular reflection or periodic condition. The most important is that the

following relations hold on the boundary:

⟨ζini(φ −gw)(φ−−g−w)⟩ = 0 on∂Dw,
∫

∂D(1)
g ∪∂D(2)

g

⟨ζini(φ −h)(φ−−h−)⟩dS= 0. (4)

1 For example,∂Dg is some control surface taken in a gas. Specular reflection and periodic boundary will also be classified into∂Dg.



Now we are ready to state the symmetric relation for steady problems:

Proposition 1 Consider the solutionsφA and φB of the boundary-value problem(1)–(3) such thatφA (or φB) is a
solution in the case of I= IA, gw = gA

w, and h= hA (or I = IB, gw = gB
w, and h= hB), whereKn (0 < Kn < ∞), R in

(2a), and P in(3b) are common to the problems. Then, if∂D(3)
g is absent orφA andφB approach hA and hB in such a

way that ∫
∂D(3)

g

⟨ζini(φA−−hA−)(φB−hB)⟩dS= 0, (5)

the following equality holds:∫
∂Dw

⟨ζinig
B−
w φA⟩dS+

∫
∂Dg

⟨ζinih
B−φA⟩dS− 1

2

∫
∂Dg

⟨ζinih
B−hA⟩dS−

∫
D
⟨IB−φA⟩dxxx

=
∫

∂Dw

⟨ζinig
A−
w φB⟩dS+

∫
∂Dg

⟨ζinih
A−φB⟩dS− 1

2

∫
∂Dg

⟨ζinih
A−hB⟩dS−

∫
D
⟨IA−φB⟩dxxx. (6)

It should be noted that the relation (6) holds unconditionally for bounded domain, while it is not clear whether or
not condition (5) for (6) to hold is fulfilled in general for unbounded domain. This is due to the slow decay ofφ −h at
a far distance.2 Nevertheless,

1. for spatially one dimensional half-space problems,
2. for the case where∂Dw is confined in a finite ball,

we can prove (5) and thus the relation (6) (see lemma 2 of Ref. [11]). For the other cases, one is required to check the
condition (5) in each application of (6). Clarifying a general situation for (5) to hold would be desired.

In the relation (6), the role of problems A and B is symmetric. One of the important features of (6) is that each
term is a definite flux ofφA or φB. It is due to (4) and (5) and implies that a proper flux through the boundary of
concerned problem may be obtained from a flux of another problem. This observation eventually leads us to a general
representation of flux through the boundary in terms of a properly defined Green function, which we shall explain in
the next section. The relations between independent problems mentioned in the introduction are to be obtained as a
consequence of that representation [11, 13]. Another feature of (6) is thatI may be arbitrary and is not limited to the one
arising from the linearization around local Maxwellian such asζi or ζi(|ζζζ |2− 5

2). Actually, some unsteady problems
and steady half-space problems can be formulated as steady problems with other forms ofI . Thus, for instance,
relations between second-order slip coefficients can be discussed by the relation (6) (see Sec. 3 of Ref. [11]).3

GREEN FUNCTION AND GENERAL REPRESENTATION FOR FLUXES

In this section, we introduce the Green function and discuss the general representation for the flux. Here we restrict
ourselves to the simplest case whereD is bounded,∂D = ∂Dw, andI = 0, for the sake of clarity.4

Taking into account the specific form ofgw, let us consider the response of the system to the point sourceα placed
at xxx0 on ∂Dw and denote it byG(α ;xxx0)(xxx,ζζζ ), whereα = 1,2ζiti(xxx0), |ζζζ |2− 5

2 andti(xxx0) is a unit tangential vector to
∂Dw atxxx0. Thus,G(α;xxx0)(xxx,ζζζ ) is a solution of the boundary-value problem (1) and (2) withI = 0 andgw = αδ (xxx−xxx0).
Applying the symmetric relation (6) to the pair ofG(α;xxx0)(xxx,ζζζ ) andG(β ;xxx1)(xxx,ζζζ ) (β = 1,2ζiti(xxx1), |ζζζ |2− 5

2) leads to

⟨ζiniβ−G(α ;xxx0)⟩(xxx1) = ⟨ζiniα−G(β ;xxx1)⟩(xxx0). (7)

2 Note that, in three dimensional problem, according to Fourier’s law of heat conduction and Stokes equation for incompressible fluid, temperature
and flow velocity approach their far field with the rate of 1/|xxx| if ∂Dw is confined in a finite ball. Such behavior is properly discussed in Ref. [6],
while much faster approach is claimed in Ref. [7] by assuming the local Maxwellian at a far distance. As pointed out in Refs. [11, 14], the fast
approach estimate in Ref. [7] is not correct. Incidentally, there is no estimate on the far field behavior in Ref. [10].
3 In some problems, both side of (6) diverge due to the form ofI . In many cases, however, such divergence can be avoided by a proper transformation.
In the reformulated problem,gw may be changed to a more general form. In the case, in applying Proposition 1,− 1

2

∫
∂Dw

⟨ζinigB−
w gA

w⟩⟩dS should

be added to the left-hand side and− 1
2

∫
∂Dw

⟨ζinigA−
w gB

w⟩⟩dS to the right-hand side of (6).
4 Ref. [11] gives a unified argument for two cases underI = 0: (i) ∂Dg = ∂D(1)

g ∪ ∂D(2)
g (thusD is bounded) and (ii)∂Dg = ∂D(3)

g (thusD is
unbounded).



FIGURE 1. Poiseuille and thermal transpiration flows. (a) Sketch of the problems. (b) Geometry of the pipe cross-section.

This means that the cause and result (induced flow or flux) are reciprocal between two different points on the boundary
(Green reciprocity). Note that the solution of the same problem with arbitrarygw (andI = 0) can be expressed by

φ(xxx,ζζζ ) =
∫

∂Dw

(
Pw(xxx0)G(1;xxx0)(xxx,ζζζ )+ |uuuw(xxx0)|G(2ζi ûwi ;xxx0)(xxx,ζζζ )+ τw(xxx0)G(|ζζζ |2− 5

2 ;xxx0)
)

dS0,

where dS0 denotes the element surface at positionxxx0 andûuuw is the unit vector in the direction ofuuuw. Thus, by taking
into account (7), the mass, momentum, and heat flows across the boundary∂Dw atxxx1 is expressed as

⟨ζiniβ−φ⟩(xxx1) =
∫

∂Dw

(
Pw⟨ζiniG

(β ;xxx1)⟩−uuuw j⟨2ζiζ jniG
(β ;xxx1)⟩+ τw⟨ζini(|ζζζ |2−

5
2
)G(β ;xxx1)⟩

)
dS, (8)

whereβ = 1, 2ζiti(xxx1), and|ζζζ |2− 5
2 gives mass-, momentum-, and heat-flow expression. This is the general representa-

tion of the fluxes through the boundary in the simplest case. Equation (8) shows that the flow (or flux) ofβ -moment at
xxx1 on∂Dw is immediately obtained if one knows the system response to the point source ofβ atxxx1. If (8) is integrated
with respect toxxx1 over a part of boundaryS(⊂ ∂Dw), the mass and heat fluxes throughS is obtained as∫

S
⟨ζiniβ−φ⟩dS=

∫
∂Dw

(
Pw⟨ζiniG

(β ;S)⟩−uuuw j⟨2ζiζ jniG
(β ;S)⟩+ τw⟨ζini(|ζζζ |2−

5
2
)G(β ;S)⟩

)
dS, (9)

whereβ = 1, |ζζζ |2 − 5
2 and G(α;S)(xxx,ζζζ ) is a solution of the boundary-value problem (1) and (2) withI = 0 and

gw = αχS(xxx), whereχS(xxx) = 1 if xxx∈ SandχS(xxx) = 0 otherwise.

Discussions of the above idea for a wider class of situations can be found in Ref. [11] (see footnote 4). For example,
if D is bounded and a part of its boundary is artificial, the fluxes through some partS⊂ ∂Dg are expressed as∫

S
⟨ζiniα−φ⟩dS=

∫
∂Dw

⟨ζinig
−
wG(α,S)⟩dS+

∫
∂Dg

⟨ζinih
−G(α,S)⟩dS+

∫
S
⟨ζiniα−h⟩dS, (10)

whereα = 1, 2ζ j , |ζζζ |2− 5
2 andG(α ;S)(xxx,ζζζ ) is a solution of the boundary-value problem (1)–(3b) withI = gw = 0 and

h = αχS(xxx). The reader is referred to Secs. 4 and 5 of Ref. [11] for more general representations and examples.

Poiseuille flow and thermal transpiration.Consider the steady Poiseuille flow and thermal transpiration in a
straight pipe (Fig. 1). The geometry of the pipe cross-section may be arbitrary. Let us denote the perturbed velocity
distribution function of the former byφP(xxx,ζζζ ) and the latter byφT(xxx,ζζζ ). ThenφP is a solution of (1), (2), and (3b)
in the domain grayed in Fig. 1 [0≤ x1 ≤ 1 andxxx⊥ ∈ S, wherexxx⊥ = (x2,x3)] with gw = I = 0 andh = x1, while φT

is a solution of (1), (2), and (3b) in the same domain withgw = h = x1(|ζζζ |2− 5
2) andI = 0 (magnitude of imposed

gradient of pressure and temperature are rescaled as unity because of the linear problem;P is the kernel of periodic
condition). Note thatφP is the Green functionG(1;S) of the considered domain. Thus, from (10) withα = 1, the
following expression is eventually obtained (by taking account of obvious properties ofφP andφT):∫

S
⟨ζ1φT⟩dS=

∫
S
⟨ζ1(|ζζζ |2−

5
2
)φP⟩dS. (11)

This is the known reciprocity relation [3] as the Onsager–Casimir relation (see also Example 5 of Ref. [11]).

We finally mention that the relation of the above theory to entropy production argument is discussed in Ref. [14]. In
Ref. [14], it is shown that the conventional Onsager–Casimir relation can be established in a pointwise way, thanks to
the Green reciprocity. Further, the situation where the conventional Onsager–Casimir relation holds is clarified.5

5 It is pointed out from early days that the conventional Onsager–Casimir relation does not hold in general, even for gross quantities like the fluxes
discussed above. See, e.g., Sec. 15.10 of Ref. [5] and references therein. Thermophoresis is an example [6, 13, 14].



SYMMETRIC RELATION AND GREEN FUNCTION FOR UNSTEADY PROBLEMS

In discussing the reciprocity based on entropy production, it is necessary to consider the production in a thin layer that
contains the interface between the gas and “body.” The production in the layer is estimated indirectly from the entropy
balance at steady state by assuming the local equilibrium inside the body, which has naturally limited the argument
to steady problems. On the other hand, the symmetric relation and Green function approach in previous sections do
not contain the thin layer in the considered domain. In other words, the argument of the thin layer is not necessary to
discuss the relations between two independent problems, once one accepts boundary conditions that have the standard
properties in kinetic theory.6 Thus, the approach in Ref. [11] can be extended to unsteady problems. In this section,
we shall present some consequences obtained from this extension on the basis of Ref. [12].

With a proper reference scalet0, we denote the time byt0 t. Below, φ , I , gw (or Pw, uuuw, andτw), hin, andh may
depend on time:φ(t,xxx,ζζζ ), I(t,xxx,ζζζ ), gw(t,xxx,ζζζ ) [Pw(t,xxx), uuuw(t,xxx), andτw(t,xxx)], hin(t,xxx,ζζζ ), andh(t,xxx,ζζζ ). However,
the domainD is bounded and does not change in time, so thatuwini = 0. Then, the behavior of the gas is described by
the following linearized Boltzmann equation in place of (1):

Sh
∂φ
∂ t

+ζi
∂φ
∂xi

=
2√
π

1
Kn

L (φ)+ I (ζζζ ∈ R3, xxx∈ D, t > 0). (12)

Here Sh[= L/t0(2kT0/m)1/2] is the Strouhal number. The initial data is denoted by putting the subscripted “initial”:

φ(0,xxx,ζζζ ) = φinitial(xxx,ζζζ ) (ζζζ ∈ R3, xxx∈ D). (13)

SinceD is bounded,∂D(3)
g does not exist. The kernelsRon∂Dw andP on∂D(2)

g do not depend ont. Then, for solutions
of initial- and boundary-value problems (12), (13), (2)–(3b), we obtain the following:

Proposition 2 Let φA be a solution of the initial- and boundary-value problem(12), (13), (2)–(3b) with I = IA,
gw = gA

w, h = hA, and φinitial = φA
initial . Let φB be a solution of the initial- and boundary-value problem(12), (13),

(2)–(3b) with I = IB, gw = gB
w, h = hB, andφinitial = φB

initial . Here the bounded domain D, the Strouhal and Knudsen
numbersShandKn, the collision operatorL , and the kernels R and P are common to both the problems with solutions
φA andφB. Then, the following relation holds:

Sh
∫

D
⟨φB−

initialφ
A⟩(t,xxx)dxxx+

∫
D
⟨IB− ∗φA⟩(t,xxx)dxxx−

∫
∂Dw

⟨ζini(gB−
w ∗φA)⟩(t,xxx)dS

−
∫

∂Dg

⟨ζini(hB− ∗φA)⟩(t,xxx)dS+
1
2

∫
∂Dg

⟨ζini(hB− ∗hA)⟩(t,xxx)dS

= Sh
∫

D
⟨φA−

initialφ
B⟩(t,xxx)dxxx+

∫
D
⟨IA− ∗φB⟩(t,xxx)dxxx−

∫
∂Dw

⟨ζini(gA−
w ∗φB)⟩(t,xxx)dS

−
∫

∂Dg

⟨ζini(hA− ∗φB)⟩(t,xxx)dS+
1
2

∫
∂Dg

⟨ζini(hA− ∗hB)⟩(t,xxx)dS. (14)

Here, f∗g is the convolution of f and g with respect to time (thus f∗g = g∗ f ):

f ∗g(t, ·) ≡
∫ t

0
f (r, ·)g(t − r, ·)dr.

This is an extension of Proposition 1 to unsteady problems for fixed bounded domains. The symmetry of the roles
of problems A and B is retained thanks to the symmetric property of convolution. From the relation (14), one
can derive a natural extension of the flux representations to unsteady problems. The reader is referred to Sec. 5 of
Ref. [12] for the missing details. Here, we shall present general representation of mass, momentum, and energy in the
domain by considering the response of the system to the initial perturbation, which is peculiar to unsteady problems,
and to “external force.” Then, the Poiseuille flow and thermal transpiration are discussed in view of the obtained
representations.

6 The appropriateness of the kinetic boundary conditions in view of the thermodynamics was studied by L. Waldmann, I. Kuščer, etc. See, for
example, Refs. [1, 5, 8] and references therein.



Let us denote byG(α) the response of the system to spatially uniform initial dataφinitial = α(ζζζ ), whereα is an
arbitrary given function. Thus,G(α) is a solution of initial- and boundary-value problem (12), (13), (2)–(3b) with

gw = h = I = 0 andφinitial = α (i.e.,G(α)
initial = α). Then, from (14), we obtain the following:

Proposition 3 Consider the initial- and boundary-value problem(12), (13), (2)–(3b) in the domain D. Then the total
α-moment in the domain at any time are expressed in terms of the Green function for the initial dataα:

Sh
∫

D
⟨α−φ⟩(t,xxx)dxxx = Sh

∫
D
⟨φ−

initialG
(α)⟩(t,xxx)dxxx+

∫
D
⟨I− ∗G(α)⟩(t,xxx)dxxx

−
∫

∂Dw

⟨ζini(g−w ∗G(α))⟩(t,xxx)dS−
∫

∂Dg

⟨ζini(h− ∗G(α))⟩(t,xxx)dS. (15)

Whenα = 1, ζi , and 2
3|ζζζ |

2, (15)gives the expression of the total mass, momentum, and energy in the domain.

Poiseuille flow and thermal transpiration.Consider the time-dependent Poiseuille flow and thermal transpiration
(Fig. 1). The former can be formulated as the flow of a gas, which is initially in the thermal equilibrium at rest with
the pipe wall of uniform temperature, caused by a uniform weak external force in the (negative)x1-direction. Thus,φP

is a solution of (12), (13), and (2) withD = S,∂D = ∂Dw = ∂S, I = −ζ1, gw = 0, andφP
initial = 0. On the other hand,

the solutionφT of the thermal transpiration problem can be expressed asφT = x1(|ζζζ |2− 5
2)+ΦT(t,xxx⊥,ζζζ ), whereΦT

is a solution of (12), (13), and (2) withD = S, ∂Dw = ∂S, ∂Dg = 0, I = −ζ1(|ζζζ |2− 5
2), gw = 0, and a certain initial

dataΦT
initial(xxx⊥,ζζζ ). Then, from (15) withα = ζ1, the following expressions are obtained:

Sh
∫

S
⟨ζ1φP⟩(t,xxx⊥)dxxx⊥ =−

∫ t

0

∫
S
⟨ζ1G(ζ1)⟩(s,xxx⊥)dxxx⊥ds, (16a)

Sh
∫

S
⟨ζ1φT⟩(t,xxx⊥)dxxx⊥ =−Sh

∫
S
⟨ΦT−

initialG
(ζ1)⟩(t,xxx⊥)dxxx⊥−

∫ t

0

∫
S
⟨ζ1(|ζζζ |2−

5
2
)G(ζ1)⟩(s,xxx⊥)dxxx⊥ds, (16b)

where the relationu1[φT] = u1[ΦT] has been taken into account. Thus, the mass flow (flux) through the pipe can be
expressed for any time in terms of the Green function for the initial dataζ1. Further, sinceG(ζ1) → 0 ast → ∞, (16) is
reduced in the same limit to

Sh
∫

S
⟨ζ1φP⟩(xxx⊥)dxxx⊥ =−

∫ ∞

0

∫
S
⟨ζ1G(ζ1)⟩(s,xxx⊥)dxxx⊥ds,

Sh
∫

S
⟨ζ1φT⟩(xxx⊥)dxxx⊥ =−

∫ ∞

0

∫
S
⟨ζ1(|ζζζ |2−

5
2
)G(ζ1)⟩(s,xxx⊥)dxxx⊥ds.

The left-hand side is the mass flow of the steady Poiseuille flow and thermal transpiration. These expressions will be
interpreted as an extension of the fluctuation–dissipation theorem to the case of arbitrary Kn in the next section.

Next we consider the response of the system to an “external force”I = α(ζζζ ), which is uniform both in time and
space, and denote it byG(α;I), whereα is an arbitrary function. Thus,G(α;I) is a solution of initial- and boundary-value
problem (12), (13), (2)–(3b) withgw = h = φinitial = 0 andI = α. Then, from (14), we obtain the following:

Proposition 4 Consider the initial- and boundary-value problem(12), (13), (2)–(3b) in the domain D. Then, the total
α-moment in the domain from the initial time can be expressed in terms of the Green function for “external force”α:

∫ t

0

∫
D
⟨α−φ⟩(s,xxx)dxxxds= Sh

∫
D
⟨φ−

initialG
(α;I)⟩(t,xxx)dxxx+

∫
D
⟨I− ∗G(α;I)⟩(t,xxx)dxxx

−
∫

∂Dw

⟨ζini(g−w ∗G(α;I))⟩(t,xxx)dS−
∫

∂Dg

⟨ζini(h− ∗G(α;I))⟩(t,xxx)dS. (17)

Whenα = 1, ζi , and 2
3|ζζζ |

2, (17) gives the expression of total mass, momentum, and energy in the domain from the
initial time.



Poiseuille flow and thermal transpiration.Consider again the time-dependent Poiseuille flow and thermal transpi-
ration problems. As is seen from its definition,φP is no other thanG(−ζ1;I)(= −G(ζ1;I)). Thus, (17) withα = −ζ1 and
φ = ΦT eventually leads to∫ t

0

∫
S
⟨ζ1φT⟩(s,xxx⊥)dxxx⊥ds=Sh

∫
S
⟨ΦT−

initialφ
P⟩(t,xxx⊥)dxxx⊥ +

∫ t

0

∫
S
⟨ζ1(|ζζζ |2−

5
2
)φP⟩(s,xxx⊥)dxxx⊥ds, (18a)

and thus ∫
S
⟨ζ1φT⟩(t,xxx⊥)dxxx⊥ =Sh∂t

∫
S
⟨ΦT−

initialφ
P⟩(t,xxx⊥)dxxx⊥ +

∫
S
⟨ζ1(|ζζζ |2−

5
2
)φP⟩(t,xxx⊥)dxxx⊥. (18b)

Equation (18b) is an extension of the reciprocal relation between the steady Poiseuille flow and thermal transpiration.
In the limit t → ∞, the first term on the right-hand side vanishes, becauseφP tends to a steady solution. Thus, in the
same limit, (18b) is reduced to the known reciprocity relation (11). [The presentφP with t → ∞ is different fromφP

in (11) byx1. However, this difference does not change the form of the relation (11).] It should be noted that the same
reciprocity as the steady case remains valid for any time, ifΦT

initial = 0.

SIMILARITY TO FLUCTUATION–DISSIPATION THEOREM

The Green functionsG(α) andG(α ;I) in the previous section are closely related to each other. In fact, it is confirmed
by substitution that Sh−1∫ t

0 G(α)(s,xxx,ζζζ )dssolves the initial- and boundary-value problem forG(α ;I):

G(α;I)(t,xxx,ζζζ ) = Sh−1
∫ t

0
G(α)(s,xxx,ζζζ )ds.

Thus, for two arbitrary functionsα(ζζζ ) andβ (ζζζ ), the following identity holds:∫
D
⟨βG(α;I)⟩(t,xxx)dxxx = Sh−1

∫ t

0

∫
D
⟨G(β )

initialG
(α)⟩(s,xxx)dxxxds. (19)

Equation (19) may be regarded as the counterpart of the fluctuation–dissipation theorem for bulk systems or as its
extension to the system of arbitrary Knudsen number (non-bulk system), which is understood as follows:

(i) Putα = β and take the limitt → ∞. Then, the left-hand side of (19) represents the system response to “external
force” α , while the right-hand side represents the self-correlation of the relaxation process from initial dataα.

(ii) Applying (14) to the pair ofG(α) andG(β ) gives∫
D
⟨G(β )−

initialG
(α)⟩(t,xxx)dxxx =

∫
D
⟨G(α)−

initialG
(β )⟩(t,xxx)dxxx. (20)

Thus, ifα andβ are even or odd with respect toζζζ , we obtain from (19) and (20)∫
D
⟨βG(α;I)⟩(t,xxx)dxxx = εα εβ

∫
D
⟨αG(β ;I)⟩(t,xxx)dxxx, (21)

whereεα(or εβ ) = 1 if α (or β ) is even and−1 if α (or β ) is odd. In the limitt → ∞, the integrand of both sides
of (21) represents the static admittance atxxx. In this sense, (21) represents an extension of the symmetry of static
admittance [17, 18] to the system of arbitrary Kn.

It should be noted that the above approach is more direct and contains a little stronger consequences than that of Sec. 6
in Ref. [12]. We shall show below two examples that supplement the above observations.

Response of the gas in a periodic box.Let D be a periodic box and consider the system responseG(2ζ1ζ2;I)

against the “external force”α = 2ζ1ζ2. ObviouslyG(2ζ1ζ2;I) is spatially uniform andG(2ζ1ζ2;I) → (
√

π/2)ζ1ζ2B(|ζζζ |)
as t → ∞. Here, B is the solution ofL (ζ1ζ2B) = −2ζ1ζ2. It is well-known thatB gives the viscosityµ [16]:
µ =

√
π p0(2kT0/m)−1/2ℓ0⟨ζ 2

1 ζ 2
2 B⟩. Now, as in (i), we take the limitt → ∞ in (19) with α = β = 2ζ1ζ2 to have

µ = p0t0

∫ ∞

0
⟨G(2ζ1ζ2)

initial G(2ζ1ζ2)(t,ζζζ )⟩dt.



In the same way, by considering the system responseG(2ζ1ζ2;I) against the “external force”α = ζ1(|ζζζ |2 − 5
2), we

eventually obtain the expression of thermal conductivityλ from (19):

λ = 2(k/m)p0t0

∫ ∞

0
⟨G(ζ1(|ζζζ |2− 5

2 ))
initial G(ζ1(|ζζζ |2− 5

2 ))(t,ζζζ )⟩dt.

These correspond to the so-called Kubo formula [17] in the linear response theory.

Poiseuille flow and thermal transpiration.We discuss again the time-dependent Poiseuille flow and thermal
transpiration and give an alternative interpretation to the formulas in the previous sections. As already mentioned,
φP = G(−ζ1;I)(= −G(ζ1;I)). Thus the expression (16a) is no other than (19) withα = β = ζ1. Further, becauseΦT is

written asΦT = G(ΦT
initial) +G(−ζ1(|ζζζ |− 5

2);I)(= G(ΦT
initial)−G(ζ1(|ζζζ |− 5

2 );I)), the expression (18a) withΦT
initial = 0 is no other

than (21) withα = ζ1 andβ = ζ1(|ζζζ |2− 5
2). Thus, the expressions (16a) and (18a) may be regarded as the extensions

of the fluctuation-dissipation theorem and of the symmetry of static admittance respectively. In particular, if we take
the limit t → ∞ for the latter, the reciprocity between the steady Poiseuille flow and thermal transpiration is recovered.
This is an alternative explanation of the known reciprocity relation by the present approach.

CONCLUDING REMARKS

In this paper, we discussed the relations between two independent problems from the viewpoint of Green functions.
The present approach based on this viewpoint enabled us to establish the reciprocity relation in a pointwise way
(Green reciprocity), by which a general representation of fluxes is deduced. It further enabled us to develop the
theory for steady problems to unsteady problems. As a result, we obtained a natural extension (or counterpart) of
the consequences of the linear response theory for bulk system to the system of arbitrary Kn.

It is straightforward to develop the present theory [11, 14, 12] to gas mixtures. However, it should be noted that,
in order to obtain the result for unbounded domain corresponding to Refs. [11, 14], it is necessary to prove a lemma
corresponding to lemma 2 of Ref. [11]. This can be done by using that in a far field the concentration of component
gas obeys the Laplace equation, in addition to that the flow velocity and temperature behave in the same way as in the
case of single-component gas.
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